若米知识 > 百科 > 求高中数学数列求和方法总结

求高中数学数列求和方法总结

导读求高中数学数列求和方法总结优质回答1. 公式法:等差数列求和公式:Sn=n(a1+an)/2=na1+n(n-1)d/2等比数列求和公式:Sn=na1(q=1)Sn=a1(1-qn)/(1-q)=(a1-an×q)/(1-q) (q≠1)2.错位相减法适用题型...

今天若米知识就给我们广大朋友来聊聊小结列式方法,以下关于观点希望能帮助到您找到想要的答案。

求高中数学数列求和方法总结

优质回答1. 公式法:

等差数列求和公式:Sn=n(a1+an)/2=na1+n(n-1)d/2

等比数列求和公式:Sn=na1(q=1)

Sn=a1(1-qn)/(1-q)=(a1-an×q)/(1-q) (q≠1)

2.错位相减法

适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式

{ an }、{ bn }分别是等差数列和等比数列. Sn=a1b1+a2b2+a3b3+.+anbn

例如:

an=a1+(n-1)d

bn=a1•q(n-1)

Cn=anbn

Tn=a1b1+a2b2+a3b3+a4b4+anbn

qTn= a1b2+a2b3+a3b4+.+a(n-1)bn+anb(n+1)

Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+.bn[an-a(n-1)]-anb(n+1)

Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+.bn)

=a1b1-an•b1•qn+d•b2[1-q(n-1)]/(1-q)

Tn=上述式子/(1-q)

3.倒序相加法

这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)

Sn =a1+ a2+ a3+ +an

Sn =an+ a(n-1)+a(n-3) +a1

上下相加 得到2Sn 即 Sn= (a1+an)n/2

4.分组法

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.

例如:an=2n+n-1

5.裂项法

适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。

常用公式:

(1)1/n(n+1)=1/n-1/(n+1)

(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]

(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5) n•n!=(n+1)!-n!

[例] 求数列an=1/n(n+1) 的前n项和.

解:an=1/n(n+1)=1/n-1/(n+1) (裂项)

Sn

=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)

= 1-1/(n+1)

= n/(n+1)

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。

注意: 余下的项具有如下的特点

1余下的项前后的位置前后是对称的。

2余下的项前后的正负性是相反的。

6.数学归纳法

一般地,证明一个与正整数n有关的命题,有如下步骤:

(1)证明当n取第一个值时命题成立;

(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

例:

求证:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5

证明:

当n=1时,有:

1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1) = 2×3×4×5×6/5

假设命题在n=k时成立,于是:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5

则当n=k+1时有:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)

= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)

= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)

= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)

= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5

即n=k+1时原等式仍然成立,归纳得证

7.通项化归

先将通项公式进行化简,再进行求和。

如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。

8.并项求和:

例:1-2+3-4+5-6+……+(2n-1)-2n

方法一:(并项)

求出奇数项和偶数项的和,再相减。

方法二:

(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]

如何做有效的课堂小结

优质回答课堂教学是一门艺术,懂得适时课堂小结更是一门艺术。“编篓编筐,重在收口”,良好的课堂小结设计可激起学生的思维高潮,产生画龙点睛、余味无穷、启迪智慧的效果。课堂小结是课堂教学环节中的重要一环,不仅可以帮助学生掌握知识和技能。还可以促进认知结构的形成,新知识模块的建立,解题技能的优化和思想方法的提炼等。尽管课堂小结对整个课堂教学起着这么重要的作用,但很多教师往往将其看做一个承上启下的程式、一段故事(情境)情节延伸,甚至是一句空洞的套话等。能否恰当地进行课堂小结,并充分发挥小结的作用,是提升课堂教学有效性的一个重要因素。下面谈谈我从教学实践中得到的一些课堂小结艺术初浅的认识。

一、趣味性总结

课堂总结的一般化,形式的呆板化,易使学生感到乏味,设计一个新颖有趣、耐人寻味的课堂总结,能使学生调节疲劳,保持学习兴趣。通过与本节课学习的内容有关的音乐、童话、故事,或是看录像、听儿歌、诗朗诵等方式,让学生感受到数学与音乐之间和谐而统一的美,在美的享受中结束一节新课的学习。教师可以把一节课知识的重点、关键编成歌诀。如“除数是小数的除法”教学后,教师可以这样帮助学生进行归纳总结:“外移几,里移几,方向一致要注意;里缺补‘0’莫忘记,上下点点要对齐。”另外,课堂总结与生活实际联系起来,也是饶有兴趣、大胆而有益的尝试,即在总结时运用新知识解释生产、生活中的现象和问题。

二、启发性总结

启发性总结,就是在学生掌握了课堂讲授内容的基础上,通过教师精心设计的启发性问题作结。这样做,不仅可以使学生学得的知识得以条理和升华,而且有利于发展学生的探究能力。在课堂结尾时,教师提出一些富有启发性、趣味性的问题,不作解答,留给学生在课余时间去思考、印证,以造成悬念,激发学生探求知识的欲望,从小培养孩子热爱数学的兴趣。如在学习“圆周率”后,可以设计这样的问题:一些老木工经常说: “一尺圆三寸。”这句话在数学上有什么样的道理?如果按照我们今天学习的计算方法,要做一个直径为1米的木桶,需要木板的总宽度约是多少?这样,既巩固了本节课乃至本阶段的学习内容,又让学生把数学与现实生活中的实际问题、重大时事等紧密结合起来,避免了单一枯燥的学习,有利于培养学生分析问题的发散思维能力。

三、概括性总结

这种结尾方式是绝大多数教育者采用率最高、最常见的一种方式。每节课结束时,为了让学生较为系统地掌握本节课的内容,教师要引导学生用准确简练的语言,对该节课的学习内容进行提纲挈领的说明,并对教学重、难点和关键问题加以概括、归纳和总结。这样可给学生以系统、完整的印象。在帮助学生思维、加深理解、巩固新知的同时,还能为学生以良好的精神状态,投入到下一阶段的学习提供基础和动力。这种总结方式,它多用于新授课。在一节数学课里,或者为了形成某一个数学概念,或者为了确立某个法则、性质,或者为了讲授某种数学方法,课堂总结时,将新授内容归纳、概括、梳理,实有必要。这样做,可以使学生快速、精炼地再现本节课的重点内容,起到深刻理解、巩固、强化知识的作用。如在教学几种专用名称百分率问题时,其名称和公式较多,有成活率、缺勤率、废品率、烘干率、含水率、命中率等等,它们分别又有各自的计算公式。如何交给学生一条“绳子”,让学生把零散的知识“捆”起来,轻松地“背”着走呢?为此,教师可以引导学生进行归纳,共同总结出“求谁的百分率,就用谁除以相关的总数量。”概括性总结,要简明扼要,画龙点睛。这样做,既能加深学生对所学知识的理解,又能减轻学生的记忆负担,同时也有助于培养学生抽象概括的能力。

四、悬念性总结

文学作品中的“悬念”,可引人人胜,激发情趣。数学课的总结,也可以通过巧设悬念,拨动学生的好奇心,激发他们学习数学的兴趣。特别是前后联系非常密切的教学内容,可考虑设置悬念。例如,一位教师在“求一个数是另一个数的百分之几”的应用题教学中,给学生一道只有条件、没有问题的不完整的题目: “某班有男生26A,女生24A。”让学生思考,根据这样的条件,可以提出哪几个问题。学生提出了六个问题:男生占女生人数的百分之几?女生占男生人数的百分之几?男生占全班人数的百分之几?女垂占全班人数的百分之几?男生人数比女生多百分之几?女生人数比男生少百分之几?对前两问,让学生口头列式教师板书;中间两问让学生书面列式集体订正;对后两题告诉学生放在下节课研究,还可以提出一些问题,均放在下节课研究。这样做使一题多变做到了适度,调动了学生学习的积极性,也为下节课做了铺垫。

五、引申性总结

即总结时,提出与本课有关的引出题,或与教材命题不同的解法。如提供多题一解,或一题多解的题组让学生思考,促进学生思维的发展。例如教学乘加(减)应用题的一道例题:“商店运来苹果240千克,运来的橘子是苹果的3倍,两种水果一共运来多少千克?”例题的解法是:240+240×3=960(千克)。总结时,可以让学生观察线段图,提示学生把“苹果的重量看作1份,橘子的重量就是这样的3份”,学生便可得出简便解法:240×(3+1)=960(千克)。这样,学生通过此引申解法,思维便上升到了一种新的境界。

总之,一堂课的结尾就如一曲乐章的尾声,设计得好,就会有掷地有声、余音缭绕、回味无穷之感。我们要尽量做到周密安排、精心设计,做到简洁明快、灵活多变、新鲜有趣、耐人寻味,使学生真正感受到“课已尽而意无穷”的效果。

求数列通项的方法总结

优质回答求数列通项的方法总结

按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。为大家总结数列求通项的方法,一起来看看吧!

一、累差法

递推式为:an+1=an+f(n)(f(n)可求和)

思路::令n=1,2,…,n-1可得

a2-a1=f(1)

a3-a2=f(2)

a4-a3=f(3)

……

an-an-1=f(n-1)

将这个式子累加起来可得

an-a1=f(1)+f(2)+…+f(n-1)

∵f(n)可求和

∴an=a1+f(1)+f(2)+ …+f(n-1)

当然我们还要验证当n=1时,a1是否满足上式

例1、已知数列{a}中,a1=1,an+1=an+2,求an

解: 令n=1,2,…,n-1可得

a2-a1=2

a3-a2=22

a4-a3=23

……

an-an-1=2n-1

将这个式子累加起来可得

an-a1=f(1)+f(2)+…+f(n-1)

∵f(n)可求和

∴an=a1+f(1)+f(2)+…+f(n-1)

当n=1时,a1适合上式

故an=2n-1

二、累商法

递推式为:an+1=f(n)an(f(n)要可求积)

思路:令n=1,2, …,n-1可得

a2/a1=f(1)

a3/a2=f(2)

a4/a3=f(3)

……

an/an-1=f(n-1)

将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)

∵f(n)可求积

∴an=a1f(1)f(2) …f(n-1)

当然我们还要验证当n=1时,a1是否适合上式

例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an

解: 令n=1,2, …,n-1可得

a2/a1=f(1)

a3/a2=f(2)

a4/a3=f(3)

……

an/an-1=f(n-1)

将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)

即an=2n

当n=1时,an也适合上式

∴an=2n

三, 构造法

1、递推关系式为an+1=pan+q (p,q为常数)

思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)

故可将递推式化为an+1+x=p(an+x)

构造数列{bn},bn=an+q/(p-1)

bn+1=pbn即bn+1/bn=p,{bn}为等比数列.

故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an

例3、(06重庆)数列{an}中,对于n>1(nN)有an=2an-1+3,求an

解:设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3

故可将递推式化为an+3=2(an-1+3)

构造数列{bn},bn=an+3

bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3

bn=bn-1·3,bn=an+3

bn=4×3n-1

an+3=4×3n-1,an=4×3n-1-1

2、递推式为an+1=pan+qn(p,q为常数)

思路:在an+1=pan+qn两边同时除以qn+1得

an+1/qn+1=p/qan/qn+i/q

构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q

故可利用上类型的解法得到bn=f(n)

再将代入上式即可得an

例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an

解: 在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得

2n+1an+1=(2/3)×2nan+1

构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1

故可利用上类型解法解得bn=3-2×(2/3)n

2nan=3-2×(2/3)n

an=3×(1/2)n-2×(1/3)n

3、递推式为:an+2=pan+1+qan(p,q为常数)

思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan)

也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy= -q

解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)

这样就转化为前面讲过的类型了.

例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an

解:设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)

也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy= -1/3

可取x=1,y= -1/3

构造数列{bn},bn=an+1-an

故数列{bn}是公比为-1/3的`等比数列

即bn=b1(-1/3)n-1

b1=a2-a1=2-1=1

bn=(-1/3)n-1

an+1-an=(-1/3)n-1

故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](nN*)

例题

1、利用sn和n的关系求an

思路:当n=1时,an=sn

当n≥2 时, an=sn-sn-1

例6、已知数列前项和s=n2+1,求{an}的通项公式.

解:当n=1时,an=sn=2

当n≥2 时, an=sn-sn-1=n+1-[(n-1)2+1]=2n-1

而n=1时,a1=2不适合上式

∴当n=1时,an=2

当n≥2 时, an=2n-1

2、利用sn和an的关系求an

思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解

例7、在数列{an}中,已知sn=3+2an,求an

解:即an=sn-sn-1=3+2an-(3+2an-1)

an=2an-1

∴{an}是以2为公比的等比数列

∴an=a1·2n-1= -3×2n-1

2、用不完全归纳法猜想, 用数学归纳法证明.

思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明

例8、(2002全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an

解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6

由此猜想an=n+1,下用数学归纳法证明:

当n=1时,左边=2,右边=2,左边=右边

即当n=1时命题成立

假设当n=k时,命题成立,即ak=k+1

则 ak+1=a2k-kak+1

=(k+1)2-k(k+1)+1

=k2+2k+1-k2-2k+1

=k+2

=(k+1)+1

∴当n=k+1时,命题也成立.

综合(1),(2),对于任意正整数有an=n+1成立

即an=n+1

数列公式总结有哪些?

优质回答有等差数列和等比数列,其中有等差数列公式和求和公式,等比数列求和公式。

若通项公式变形为(n∈N*),当q>0时,则可把看作自变量n的函数,点(n)是曲线上的一群孤立的点。

等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2

若m+n=p+q则:存在am+an=ap+aq

若m+n=2p则:am+an=2ap

n均为正整数。

数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

内容参考 百度百科-数列

高中数学数列总结

优质回答教学课题: 数列的求和

备课人:王德固

教学目的:小结数列求和的常用方法,尤其是要求学生初步掌握用公式法、分组结合法、裂项相消法、错位相减法、倒序相加法求解一些特殊的数列;

教学前的准备:

(1) 基本公式:

① 等差数列的前n项和公式

② 等比数列的前n项和公式

(2) 特殊数列求和---常用数列前n项和(记忆)

教学过程: 对于非等差数列、等比数列的特殊数列,求其前n项和的一般方法是:先求数列的通项公式,再分析数列通项公式结构的特征,然后转化为等差数列、等比数列求和或采用消项的方法求和。

知识点1:公式法(若问题可转化为等差、等比数列,则直接利用求和公式即可)

知识点2: 分组结合法(分组求和法、拆项法)

若数列 的通项公式为 ,其中 中一个是等差数列,另一个是等比数列,求和时一般用分组结合法。

知识点3:裂项相消法 (裂项法)

如果一个数列的每一项都能化为两项之差,并且前一项的减数恰与后一项的被减数相同,求和时中间项相互抵消,这种数列求和的方法就是裂项相消法;

知识点4:错位相减法

若数列 的通项公式为 ,其中 , 中有一个是等差数列,另一个是等比数列,求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比 ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

知识点5:倒序相加法

倒序相加法是推导等差数列前n项和公式的一种方法,在今后学习“排列、组合、二项式定理”一章中还会应用到,这里不加说明。

小结:特殊数列求和的几种常用方法的说明和应用;

我们通过阅读,知道的越多,能解决的问题就会越多,对待世界的看法也随之改变。所以通过本文,若米知识相信大家的知识有所增进,明白了小结列式方法。

本文来自网络,不代表本站立场,转载请注明出处:https://www.rm2g.com/baike/117573.html

作者: 若米知识

若米知识为您提供最全面的生活百科网站大全,主要为您提供数码、汽车、财经、美食、财经、科技、健康、教育、创业、电商、影视、百科等资讯信息,在这里可以找到您所需的答案,解决您所困惑的问题。
三维太空环价格.可移动太空环价格
种瓜子的方法有哪些
联系我们

联系我们

0898-88881688

在线咨询: QQ交谈

邮箱: email@wangzhan.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部